Improving the oxidation resistance of nickel-based superalloys for turbine blades

David N. Seidman
Department of Materials Science and Engineering
What is the role of yttrium in inhibiting oxidation?

High service temperatures of turbine engines enable higher ratios of generated power to fuel consumption. Yttrium has been regarded as a promising element for increasing the oxidation resistance of Ni-based superalloys at high temperatures, Fig. 1. Possible reasons are:

- Mechanical strengthening of the aluminum oxide layer;
- Improving the adherence of the oxide layer to the metal substrate by either desulphurization (forming Y_2O_2S or Y_2S_3); that is, inhibiting interfacial segregation of sulfur or by interfacial segregation of Y;
- Retarding oxygen diffusion.

Fig. 1 The temporal dependence of the oxide thickness on oxidation time for the René N’5 (without Y) and N’5+ (with Y) alloys for different temperature-time treatments. The oxide layer of the N’5 alloy (full symbol) is always thicker than for the N’5+ alloy (empty symbol). **Fig. 2** is a SEM micrograph of the metal/oxide interface in the N’5 alloy after oxide spallation during a 100 h heat treatment at 900°C.

Local -electrode atom-probe (LEAP) tomographic analyses of specimens lifted-out from the vicinity of the metal/oxide interface (Fig. 2) will provide us with answers to the following questions, thereby help us determine the role of Y.

- Does Y segregate at the metal/oxide interface?
- Is there formation of clusters, e.g., Y_2O_2S or Y_2S_3, in the local vicinity of the metal/metal-oxide interface?
- How does the oxygen concentration vary with distance in the metal oxide thickness?