Probing battery electrochemistry \textit{in situ} at atomic scale

PI: Jinsong Wu1
Co-PIs: Mark Hersam1, Vinayak Dravid1, Jeffrey Elam2

1. Materials Science and Engineering, Northwestern University
2. Argonne National Lab
In Operando electrochemical reactions of electrodes and ions revealed at atomic resolution

Experimental setting of a miniature half-cell battery observed in a high-resolution transmission electron microscope.

Lithiation of a single Co$_3$O$_4$ nanocube: [Co$_3$O$_4$ +2Li \rightarrow 3Co + 2Li$_2$O]

Top: time-resolved *in-situ* HREM of the lithiation of a Co$_3$O$_4$ nanocube (with reaction time). The scale bar in red is 5 nm.

Bottom: Schematic of structural transformation from spinel Co$_3$O$_4$ to Li-ion inserted Li$_x$Co$_3$O$_4$, Co-rich Co-Li-O clusters and interconnected Co0-clusters embedded in Li$_2$O.

We plan to apply atomic scale observation of charging and discharging for several important electrodes of high capacity and rechargeable batteries. This will be applied beyond the scope of lithium-ion battery, to other system such as sodium-ion and aluminum-ion batteries.