Efficient Alkane Metathesis by Tandem Catalysis Phase I: Olefin Metathesis

Peter C. Stair
Department of Chemistry
Tremendous efforts have been devoted to developing more efficient and robust catalysts that could bridge the gap between highly active homogeneous catalysts (TOF of 10^3-10^4/h) and easily separable heterogeneous catalysts (TOF of 10^1-10^2/h). To the best of our knowledge, no olefin metathesis catalyst has been reported to simultaneously possess high activity, selectivity, stability, and ease of regeneration.

We discovered that a simple pretreatment of silica supported molybdenum oxide and tungsten oxide in an olefin-containing atmosphere at elevated temperatures led to two to three orders of magnitude higher activity for propylene metathesis. The catalytic performances of these catalysts are comparable with those of well-defined organometallic olefin metathesis catalysts and are easily regenerated by inert gas purging at elevated temperatures.

Our work provides a surprisingly convenient way to bridge low-cost and easily regenerated heterogeneous catalysts with highly active and selective homogeneous catalysts for olefin metatheses.