ISEN Report: Opinions about Energy

The ultimate success of energy initiatives depends in large part on public acceptance. Politicians rarely pass new policies in the face of public opposition, and public policies, even when implemented, seldom succeed if citizens largely flout them. Examples include privatization and deregulation, which, while supported by many economists and policy experts, may face fierce resistance by constituents. Similarly, if customers and other stakeholders do not embrace, or at least tolerate, new technologies, then they will not find commercial acceptance and may face regulatory hurdles. Well-known examples of this possibility include nuclear power, biotech (especially with respect to agricultural products in Europe), and, more recently, increasing concerns over nanotechnology.

Part of developing a U.S. energy policy, whether public or private, thus lies in understanding public opinion about existing energy sources, public support for various energy strategies, and what the public might be willing to accept in order to conserve energy and develop and adopt new technologies, whether in energy production or distribution. An understanding of the origins and nature of citizens’ preferences, however, is only part of the puzzle. Successful energy policy also requires examining the views of the critical actors who collectively determine policy. This includes a wide range of actors; yet, of particular importance is how the public’s attitudes cohere with those of government officials who create the policies and scientists who develop the technologies that form the foundation of any new energy policy.

Citizens, policy-makers, and scientists play a critical role in the design and implementation of energy policy, with success requiring some coherence in their opinions.\(^1\) A lack of coordination among these actors, however, has proven to be a non-trivial hurdle in the development of policy. For example, with regard to experts (e.g., scientists), Holden (2006: 885) explains, “Energy policy also forces attention to the quality of scientific advice. It is apparent that over the past three decades, things have not gone very well… [There is] needed resolution in the conflicts between the public positions of the experts who are most influential or who make the boldest claims that their opinions should be decisive.” Finding points of agreement and disagreement between critical actors will potentially facilitate the creation of coherent energy approaches, rather than the historically disjointed efforts apparent in hundreds of bills and technologies. It will ensure the development of technologies and policies that will receive support from the public as well as from scientists, the latter of which play a part in promoting and implementing the policy vision. A lack of coordination between critical actors increases the likelihood that the public will reject policies and technologies offered them.

\(^1\) Of course, we realize other actors matter as well, such as foreign governments, local/state governments, interest groups, and corporate entities (e.g., industry) (see Prontera 2009: 29-33).
The goal of our project is to (1) descriptively isolate points of agreement and disagreement among critical actors’ understanding of and attitudes toward various aspects of energy and (2) provide insight into the processes by which individuals arrive at their energy opinions. We do this via public opinion surveys.

Framework

We begin by defining “energy.” “Energy” typically refers to *traditional sources* including oil, coal, and natural gas (Smith 2002), and *alternative sources* including nuclear, solar, wind, and hydrogen (Prontera 2009). The Department of Energy’s full list for traditional sources of energy includes coal, oil, and natural gas (i.e. “fossil fuels”), while they count as alternative, or renewable, energy obtained from bioenergy, fusion, geothermal, hydrogen, hydropower, nuclear, solar, and wind sources (although some would view nuclear as not clearly renewable). Finally, the generation of electric power may stem from either traditional or alternatives sources.

One of our goals is to gauge *attitudes toward these distinct sources*. If actors vary in their feelings about particular types of energy, then coordination may be more difficult. This is evident, for example, with nuclear energy where some scientists may see it as a viable alternative to traditional sources, but much of the U.S. public fears the building of power plants (see Ansolabehere and Konisky 2009). Thus, a policy of building more nuclear plants, even if scientifically sound, may be politically challenging.

The next question is whether there is a *problem with the current energy regime (and the extent of the problem)*. Indeed, studying energy policy is of particular interest in situations where a belief is evident that the current regime is not sufficient given ongoing conditions and, given that, of the need for change. There is little doubt that many believe we are currently in such a situation. This is evident from various sources: media coverage, policy initiatives, the public’s perception of the nation’s most important problem, funding of energy research, etc.

Despite the belief, apparently widely held, that the current energy regime requires some change, there will nonetheless be variance in how people understand current energy challenges. We want to explore these differences since distinct perceptions of the *extent of, causes of, and responsibility for addressing* the problem may create difficulties in achieving consensus. We will thus explore beliefs concerning the salience and extent of energy problems and their role in affecting attitudes concerning energy policy. We will further investigate how attributions of responsibility for solving this problem, and beliefs concerning its cause, influence attitudes toward energy policies and technologies.

The final, and perhaps most salient, question is what steps are feasible in addressing energy challenges. This, in essence, is *energy policy*. Prontera (2009: 2) explains that “Energy policy involves *interventions* in the sectors of coal, electricity, oil and gas, as well as nuclear and renewable energy, and the *activities* aimed at improving energy efficiency in *supply and consumption* (McGowan 1996)” (emphasis added). Interventions involve laws and regulations that define the production and consumption of energy. Activities in supply refer, largely, to the development of new approaches to energy, perhaps most notably, technologies. Activities in consumption come in various guises, but of particular note are individuals’ behavioral choices.
We thus focus on: (a) laws (the most direct part of policy), (b) technologies, and (c) behaviors. The last two categories directly affect the crafting of laws and/or how citizens impact them.

In sum, understanding the potential of energy policy requires exploring the opinions of at least three key actors – citizens, scientists, and policy-makers – toward different types of energy (traditional and alternative sources), about the nature of the energy challenge facing the United States, and toward features that shape energy policy (laws, technologies, and behaviors). We aim to pinpoint differences and similarities in the actors’ attitudes and to understand the factors that influence the formation of these opinions. Once we understand the nature of energy attitudes, and what drives them, we can use this knowledge to understand why some energy approaches succeed while others fail.

Research Plan and Results

We implemented public opinion surveys with three samples: the public, policy-makers, and scientists. For our public sample, we contracted with a survey organization that collected data during August 2010, with a nationally representative sample of 1,500 respondents. At the same time as the public survey, we implemented the policy-maker and scientist surveys. For the policy-makers, we contacted – via e-mail and snail mail – approximately three high level legislative aids in each U.S. Congressional office. For scientists, we constructed a sample of scholars who published on energy, in any of a large selection of journals, from 2006-2010, were U.S. based, and cited at least 5 times. To increase response rates we offered selective incentives to the scientists and policy-makers.

Each of the surveys included a descriptive assessment of opinions about energy that capture the dimensions of the framework described previously. For example, we asked respondents to assess the extent to which they support using various traditional and alternative energy sources, the extent to which they believe energy is a national problem, the causes of any such problem, and whom they believe should address the problem (e.g., consumers, government, industry, etc.) We also asked about opinions regarding various curtailment laws (e.g., carbon tax), investments (e.g., into distinct types of research), and technologies (e.g., nanotechnology, nuclear). Finally, we employed various measures to capture behaviors including, contingent valuations, self-report, and willingness to share e-mail addresses in order to obtain more information about energy. We are happy to share the actual surveys upon request.

Thus far, we have not analyzed the elite surveys or the descriptive portions of the public survey. We plan to do so in the next year. Since these populations collectively help determine the course

2 Laws take one of two approaches: investment in production, research, or expansion (in alternative or traditional sources, using subsidies and incentives), or curtailment of usages (e.g., laws that curtail usage of traditional sources by citizens via behavioral incentives, or production of sources by industries via taxes).

3 New technology often involves the continued development of renewable sources, and this is on what we will focus.

4 Behaviors can involve curtailment – which involves changing habitual behaviors (e.g., turning off lights and appliances when not in use, taking shorter showers, etc.), or capital investments which generally involve infrequent decisions and may have greater situational constraints (e.g., purchasing a more fuel efficient vehicle, insulating one’s home, etc.) (Stern 2000).
of energy policy, the analytical point of interest will be the extent to which attitudes cohere across the three samples.

We have extensively analyzed the three experiments that we embedded in the public survey. In what follows, we provide an overview of the results from each.

Partisan Polarization. The last decade has seen an increasing level of partisan polarization among elite actors. Indeed, after the Republican gains in the 2010 midterm elections, President Obama stated, “On energy issues we’re probably going to have to say there are some issues where there’s just too much disagreement to get this done right now.” Significant partisan divides likely influence how citizens evaluate new laws. In this experiment, we focus on support for the Energy Independence and Security Act of 2007. This law was noteworthy as it included some components typically associated with Democrats and other components that typically cohere with Republican ideology. For example, the law required U.S. automakers to boost gas mileage to 35 miles per gallon for all passenger cars by 2020; a 40% increase. The law also provided funds for research and development of solar and geothermal energy and for the increased production of biofuels. Finally, EISA provided small businesses loans toward energy efficiency improvements. The question for us was how partisan endorsements would affect support for the Act. (Note that, in reality, the Act enjoyed multi-party support, with most Democrats and more than half of the Republicans voting in its favor; President Bush, a Republican, signed the bill into law). Do individuals objectively assess the content of the law or are they driven by attributions concerning the law’s sponsor?

We suspect – for theoretical reasons on which we will not elaborate here – that the power of partisan endorsements will depend on the individual’s motivation. Sometimes people are motivated to form “accurate,” or the most correct, preferences whereas other times this motivation drives them to protect their partisan identities. In the study, then, we also vary motivation to account for this possibility.

Our precise design involved randomly assigning people to one of fifteen conditions as described in the table below. The table also includes predicted effects – again, we will not discuss the origins of these predictions here, other than saying that we ground them in a psychological theory of reasoning. Also, note that all predictions refer to shifts in support relative to the level of support found in condition 3. We gave respondents in condition 3 no information concerning partisan endorsements and encouraged them to think carefully about the policy. In short, condition 3 represents the normative standard wherein the public carefully considers a policy rather than judges it based solely on partisan attachments.

5 We did not include the experimental component with the policy-makers and scientists. We exclude it for a few reasons, including the importance of keeping the survey short for these expect samples as they have less incentive to respond than the public sample, which consists of paid web respondents.
<table>
<thead>
<tr>
<th></th>
<th>None</th>
<th>Same Party</th>
<th>Different Party</th>
<th>Consensus</th>
<th>Bi-partisan</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Condition 1</td>
<td>Condition 4</td>
<td>Condition 7</td>
<td>Condition 10</td>
<td>Condition 13</td>
</tr>
<tr>
<td></td>
<td>?</td>
<td>Depends</td>
<td>Depends</td>
<td>Depends</td>
<td>No change</td>
</tr>
<tr>
<td>Directional</td>
<td>Condition 2</td>
<td>Condition 5</td>
<td>Condition 8</td>
<td>Condition 11</td>
<td>Condition 14</td>
</tr>
<tr>
<td></td>
<td>?</td>
<td>Increase</td>
<td>Decrease</td>
<td>Increase</td>
<td>No change</td>
</tr>
<tr>
<td>Accuracy</td>
<td>Condition 3 Normative</td>
<td>Condition 6</td>
<td>Condition 9</td>
<td>Condition 12</td>
<td>Condition 15</td>
</tr>
<tr>
<td></td>
<td>Standard</td>
<td>No change or slight increase</td>
<td>No change or slight decrease</td>
<td>No change or slight increase</td>
<td>No change</td>
</tr>
</tbody>
</table>

As the table shows, we varied two elements: partisan endorsement and motivation. We indicated the endorsements by stating one of the following five conditions: The Energy Act (1) “overall, was widely supported by Democratic representatives and,…”; (2) overall, was widely supported by Republican representatives and,…”; (3) overall, was widely supported by representatives from both parties, and,…”; (4) overall, was supported by some, but not all, representatives of both parties, and,…”; and (5) no mention of an endorsement. We sorted people into the same or different party conditions by using their reported partisan identification, which we obtained earlier in the survey. Note that we include the consensus conditions (i.e., where representatives from both parties widely supported the Act) to explore the effects of unanimity and the bi-partisan conditions (where the Act was supported by a mix of parties) to see if mixed party support has an effect. Our expectation is that the consensus conditions will end up working like same party cues since the individual’s party still supports the Act, whereas the bi-partisan conditions will lead individuals to more carefully assess the policy due to partisan conflict stimulating greater attentiveness.

After exposure to the endorsement information, or lack thereof, participants received some details about the Act and answered the following question, “Given this information, to what extent do you oppose or support the Act?” Respondents indicated their level of support on a 7-point scale, with higher scores indicating increased support.

We manipulated motivation, following work in psychology, via random assignment and the provision, or withholding, of instructions designed to elicit the sought after motivation. Individuals in the “none” conditions received no instructions, while we instructed those in the “accuracy” conditions in the following manner: “When thinking about your opinion, please try to view the policy in an evenhanded way. We may later ask that you justify the reasons for your judgment – that is, why the policy’s content is more or less appealing.” Those in the “directional” conditions, meanwhile, received the following instructions: “When thinking about your opinion, consider that the bill was passed during a period of divided government where fellow partisans voted together nearly 90% of the time. This was necessary to ensure coherent
policy programs. We may later ask you about your party and why you affiliate with it.” We report the results from this experiment in the below table, again showing the percentage change in opinion for each condition relative to our normative baseline condition. (We exclude pure independent voters from the analyses.)

The results show:

- Support marginally increased in the no-party conditions, suggesting that inducing careful consideration limits support somewhat.

- In the conditions with either no motivation manipulation or the directional partisan manipulation, we see support increased when the party sponsor matched the respondent and decreased when the party sponsor was the opposite party. Thus, the exact same policy received differential support depending on the attributed source.

- As expected, the results for the consensus conditions are the same as those derived from the same party sponsor conditions.

- In contrast, the bi-partisan conditions eliminated a sponsorship effect – when some, but not all, members from both parties support the Act, it appears to stimulate increased consideration along the lines of explicit accuracy inducement.
• In every case, the accuracy inducement eliminated the sponsorship effects – it overwhelmed any biased reasoning as the results mimicked those of the normative baseline.

The results are robust to various control variables such as age, knowledge, trust in government, partisanship, etc. In addition, it is worth nothing that the results are contingent on the strength of partisanship – we will not go into those details here, however.

The bottom line is that the results suggest that emphasizing parties can hamper citizen decision-making, as partisans selectively analyze information based on the information’s partisan source instead of its substantive content. Citizens accept (reject) information that they would otherwise reject (accept) had they analyzed the content with greater carelessness. It also seems that there are three antidotes to reduce this bias: explicitly induce individuals to form “accurate” decisions, generate bi-partisan or cross-partisan support (that is not universalistic), or induce ambivalence about partisanship (weakening party identification). These are challenging antidotes, especially in an age of polarization where partisan cooperation is rare and party identities are strong.

Energy Actions. Energy policy depends on citizens’ actions. In many cases, citizens are unlikely to undertake energy efficient behaviors since they involve personal costs and have only collective benefits (e.g., buying a hybrid car often costs more while everyone enjoys the greenhouse benefits). We studied the extent to which attributions of responsibility affect individuals’ willingness to partake in energy efficient behaviors. We focused specifically on the relative impact of attributions and arguments emphasizing either the positive or the negative effects of the behavior.

We focused on two types of behavior: one involving investments, specifically the likelihood of insulating/weatherizing one’s home, and the other dealing with the curtailment of behavior, specifically an individual’s likelihood of adjusting their thermostat in summer or winter to save energy. We asked the survey respondents questions designed to assess their likelihood of performing these actions as well as the amount the respondent would spend performing them. We also asked respondents whether they would be willing to provide their e-mail address in order to receive more information concerning energy.

Our precise design varied attributions and arguments, or frames, as described in the table below, which list the conditions to which we randomly assigned respondents.

<table>
<thead>
<tr>
<th></th>
<th>No Effect Frame</th>
<th>Costs Frame (selective incentive)</th>
<th>Environment Frame (collective incentive)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Attribution</td>
<td>Condition 1</td>
<td>Condition 4</td>
<td>Condition 7</td>
</tr>
<tr>
<td>Individual Attribution</td>
<td>Condition 2</td>
<td>Condition 5</td>
<td>Condition 8</td>
</tr>
<tr>
<td>Government Attribution</td>
<td>Condition 3</td>
<td>Condition 6</td>
<td>Condition 9</td>
</tr>
</tbody>
</table>

We told those in the individual attribution conditions, “The ultimate success of our nation’s energy policy depends largely on individual choices about energy consumption. Individuals
need to step up to the plate – something they have done throughout American history without having to rely on the government.” In contrast, those in the government attribution conditions read, “The ultimate success our nation’s energy policy depends largely on governmental decisions about energy supply. Government needs to step up to the plate – something they often do when individuals alone cannot resolve a problem.” The idea here is that individual attributions will stimulate more responsibility and more energy efficient behaviors.

One way to induce behavior is to affect individual’s attributions of responsibility for the outcome in question. Another method is to emphasize the costs and/or benefits associated with the behavior. This second consideration led us to vary respondents’ exposure to cost or environment frames. Those in costs frame conditions read, “[energy] choices have important economic consequences. For instance, switching from regular light bulbs to energy saving bulbs will cost consumers, in general, billions of dollars each year by causing them to pay a cost premium.” The environment frame read, “[energy] choices have important environmental consequences. For instance, switching from regular light bulbs to energy saving bulbs will ensure individuals, in general, live in a healthy environment by saving the world from millions of metric tons of greenhouse gases.” We measured respondents’ attitude toward performing energy efficient behaviors after they received their randomly assigned frame. As with the first experiment on partisan polarization discussed above, we asked respondents three questions: one concerning their likelihood of engaging in each behavior as measured on a 7-point scale where higher scores indicate an increased likelihood of behavior; their willingness to pay; and their willingness to receive more information.

Our results across the three different types of measures are consistent and, for this reason, we present the likelihood measures only. The graph below presents the percentage change in opinions concerning insulation/weatherization, e.g. the investment behavior, relative to the control group (condition 1).
The results are clear. De-mobilization is quite easy – invoking costs or attributing responsibility to the government significantly decreases the likelihood of insulating/weatherizing. In contrast, mobilization is challenging as only the use of the individual attribution frame and an emphasis on the environment increases the individual’s likelihood of considering the behavior. Interestingly, mobilization required both conditions; while referencing the environment without an attribution creates movement in a positive direction, it never does so significantly. An individual attribution frame without reference to the environment, meanwhile, is significantly positive on the likelihood variable, although its effects are weaker than when the individual attribution frame comes with an environment frame.

The next graph presents analogous results, but focuses on the likelihood of adjusting the thermostat (curtailment behavior). The results are clear, but differ from those obtained for the investment behavior. In this case, emphasizing the selective benefit of cost universally increases intent to adjust one’s thermostat to save energy. This is sensible since the behavior is a cost-saving move and thus emphasizes a selective benefit. Interestingly, the governmental attribution does not matter here. This makes sense since selective incentives have little to do with overall responsibility for a problem. In contrast, we see appeals to collective benefits (environment) only work with the individual attribution frame. We also observed that emphasizing governmental responsibility de-mobilized individuals when we paired the attribution of responsibility frame with no frame indicating benefits or with the frame indicating that the behavior would have environmental benefits.

In short, mobilization is easier given the salience of selective benefits associated with the behavior. However, mobilization based on collective benefits continues to be difficult with

![Likelihood of Adjusting Thermostat Graph](image-url)
mobilization and requires the presence of a selective cost benefit for the individual or the use of multiple coherent frames.

Politicization of Science. Over the last several years, well-known commentators have called into question ostensibly sound science. As a 2010 *Nature* editorial states, “There is a growing anti-science streak...that could have tangible societal and political impacts on many fronts.” How these trends affect public opinion has received virtually no systematic inquiry. This is a particularly relevant question because researchers studying opinions about science typically ground their research in a theory of scientific literacy that posits exposure to scientific information as leading to increased understanding by the public and, typically, support for new technologies. Yet, it seems quite plausible that the politicization of science makes the impact of any information less reliable. Our experiment sought to address the question of how politicization affects support for an energy technology. We tested this against a counterfactual of how an emphasis on the virtues of science affects opinions. We focused on support for the use of nuclear energy. (Note: we implemented this study prior to the Japanese earthquake.) We randomly assigned respondents to one of nine conditions, as described in the table below.

<table>
<thead>
<tr>
<th></th>
<th>No Prime</th>
<th>Science benefits</th>
<th>Politicization</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Frame</td>
<td>Condition 1</td>
<td>Condition 4</td>
<td>Condition 7</td>
</tr>
<tr>
<td>Frame without evidence</td>
<td>Condition 2</td>
<td>Condition 5</td>
<td>Condition 8</td>
</tr>
<tr>
<td>Frame with evidence</td>
<td>Condition 3</td>
<td>Condition 6</td>
<td>Condition 9</td>
</tr>
</tbody>
</table>

In condition 1, we asked respondents how much they favor increased usage of nuclear energy. Answers to this question are on a 7-point scale with higher scores indicating greater support. Prior to this question, some respondents also received a scientifically oriented argument about the environment, which stated: “Research suggests that alternative energy sources can dramatically improve the environment, relative to fossil fuels like coal and oil that release greenhouse gases and cause pollution. For example, unlike fossil fuels, wastes from nuclear energy are not released into the environment” (conditions 2, 5, 6). Individuals in other conditions received that argument plus a citation to evidence, which read, “…A recent National Academy of Sciences publication states, ‘A general scientific and technical consensus exists that deep geologic disposal can provide predictable and effective long-term isolation of nuclear wastes’” (conditions 3, 6, 9). We varied exposure to a “frame” and evidence given the expectation that politicization will have particular effects on the presentation of scientific evidence. We also varied exposure to a prime concerning science such that respondents received either no prime (i.e., no reference to the virtues of science; conditions 1, 2, 3), a science prime, or a politicization prime. The science prime stated, “…scientific research involves the systematic gathering of observable, measureable, and replicable evidence – as such it provides a relatively objective and unbiased basis for new innovations” (conditions 4, 5, 6). The politicization prime stated, “…it is increasingly difficult, for non-experts to evaluate science – politics often colors scientific work and advocates selectively use science to favor their agendas” (conditions 7, 8, 9).
We examined the results by measuring the percentage change in support for nuclear energy in each condition, relative to the control (condition 1). The graph below provides the results.

The key results are:

- The presentation of an argument, with or without evidence, increased support, but only marginally.

- Emphasizing the scientific method by itself does little.

- The combination of the scientific method frame with an argument concerning nuclear energy’s benefits substantially increased support. This effect was particularly strong with the inclusion of evidence supporting the argument.

- Politicization renders the argument impotent. The presence of evidence in the politicized conditions did not reverse this effect.

- There are marginally significant negative effects for the politicization prime such that reminding people of politicization decreases support for a new technology.

In short, an argument concerning the benefits of nuclear energy, with or without evidence supporting it, produced marginally greater support for this energy source. The inclusion of an argument highlighting the virtues of science bolsters this effect, with support growing dramatically in comparison to the baseline condition. More importantly, politicizing science makes arguments, even those with scientific evidence, powerless and directly decreases support. These results are robust to the inclusion for a host of control variables (e.g., gender, partisanship,

Shift in Support (Relative to Control)

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Shift in Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argue, No Evid. (2)</td>
<td>3.74%*</td>
</tr>
<tr>
<td>Argue, Evid. (3)</td>
<td>3.89%*</td>
</tr>
<tr>
<td>Sci., No Argue, No Evid. (4)</td>
<td>1.49%</td>
</tr>
<tr>
<td>Sci., Argue, No Evid. (5)</td>
<td>6.04%***</td>
</tr>
<tr>
<td>Sci., Argue, Evid. (6)</td>
<td>10.14%***</td>
</tr>
<tr>
<td>Poli., No Argue, No Evid. (7)</td>
<td>-4.16%*</td>
</tr>
<tr>
<td>Poli., Argue, No Evid. (8)</td>
<td>-3.43%*</td>
</tr>
<tr>
<td>Poli., Argue, Evid. (9)</td>
<td>-3.95%*</td>
</tr>
</tbody>
</table>

Note: ***p≤.01; **p≤.05; *p≤.11, one-tailed
knowledge). Of particular interest is that in other analyses we find that the extent to which one trusts science (in general) moderates the findings. (We do not go into these details here, however). Overall, our results highlight how politicization of science creates a major challenge for those who try to present scientific evidence concerning energy policy even when consensus among sources that are ostensibly high in credibility supports this evidence.

Conclusion

In addition to contributing to basic research on opinion formation, our results have clear applied relevance. The results provide insight for policy-makers in terms of which approaches are more or less likely to gain public acceptance. Similarly, scientists can learn – and hopefully become increasingly aware – of the types of challenges they face in promoting distinct technologies and how best to present these technologies to the public and policy-makers. Finally, this research provides insight as to how better to inform the public’s understanding of energy as well as the promotion of more careful reasoning processes so that citizens may look past partisan biases and distinguish good science from bad. We anticipate that our added analyses, comparing the three populations, will allow us to isolate potential hurdles to the creation of energy policy.

Related Work

The project prompted us to engage in some other work, as follows. (Toby Bolsen is a recent Ph.D. graduate.) Also, a number of political science graduate and undergraduate students were involved in the construction and implementation of the surveys.

References

